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Abstract. A mixture of two types of super-paramagnetic colloidal particles with long-range dipolar inter-
action is confined by gravity to the flat interface of a hanging water droplet. The particles are observed
by video microscopy and the dipolar interaction strength is controlled via an external magnetic field. The
system is a model system to study the glass transition in 2D, and it exhibits partial clustering of the small
particles (N. Hoffmann et al., Phys. Rev. Lett. 97, 078301 (2006)). This clustering is strongly dependent
on the relative concentration ξ of big and small particles. However, changing the interaction strength Γ
reveals that the clustering does not depend on the interaction strength. The partial clustering scenario
is quantified using Minkowski functionals and partial structure factors. Evidence that partial clustering
prevents global crystallization is discussed.

PACS. 82.70.Dd Colloids – 64.70.P- Glass transitions of specific systems

1 Influence of dimensionality on frustration

It is well known that the macroscopic behavior of crys-
talizing systems sensitively depends on dimensionality, as
demonstrated by two examples: In 2D an intermediate
phase exists between fluid and crystal, the hexatic phase,
where the system has no translational order while the ori-
entational correlation is still long range [1–3]. Such a two-
step melting scenario is not known in 3D. The Ising model
for ferromagnetics shows a phase transition for 2D and 3D
but not for 1D [4]. For amorphous systems, however, it was
found in experiments [5], simulations [6], and theory [7]
that the glass transition phenomenology is very similar in
2D and 3D systems, both in dynamics and structure [5,8].

A subtle difference, the local density optimization in
2D and 3D, is the following: in 3D the local density opti-
mized structure of four spheres is obviously a tetrahedron.
However, it is not possible to completely cover space in 3D
with tetrahedra, because the angle between two planes of a
tetrahedron is not a submultiple of 360◦ [9]. The density
optimized state with long-range order is realized by the
hexagonal closed-packed structure or other variants of the
f.c.c. stacking with packing fraction φ = π/

√
18 ≈ 74%.

The dynamical arrest in 3D is expected to be enhanced by
this geometrical frustration, because the system has to re-
arrange its local-density optimized structure to reach long-
range order1. The local geometrical frustration scenario is

a e-mail: peter.keim@uni-konstanz.de
1 It is found in 3D hard-sphere systems that this geometri-

cal frustration alone is not sufficient to reach a glassy state

different in 2D. There, the local-density optimized struc-
ture and densest long-range–ordered structure are iden-
tical, namely hexagonal. For the glass transition in 2D
it is therefore expected that an increase of complexity is
necessary to reach dynamical arrest without crystalliza-
tion: in simulations an isotropic one-component 2D sys-
tem has been observed undergoing dynamical arrest for
an inter-particle potential that exhibits two length scales,
a Lennard-Jones-Gauss potential with two minima [14].
Other simulations showed that systems of identical par-
ticles in 2D can vitrify if the mentioned local geometric
frustration is created artificially via an anisotropic five-
fold interaction potential [15]. Alternatively, the necessary
complexity can be created by polydispersity as found in
simulations [16].

A bi-disperse system in general is simple enough to
crystallize as, e.g., seen from the rich variety of binary
crystal structures in an oppositely charged 3D Coulomb
mixture [17]. In the system at hand, partial clustering pre-
vents the homogenous distribution of particles and the sys-
tem crystallizes locally into that crystal structure which
is closest in relative concentration [8,18,19]. In this way
the system effectively lowers its energy with a compro-
mise between minimization of particle transport and min-
imization of potential energy. However, that means that
the resulting structure is not in equilibrium, but in a
frustrated glassy state. This competition of local stable

as it cannot sufficiently suppress crystallization [10–12], and
additionally polydispersity is needed [13].
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crystal structures prevents the relaxation into an energet-
ically equilibrated state, i.e. a large mono-crystal.

It was found that a binary mixture of magnetic dipoles
is a good model system of a 2D glass former [5] as the dy-
namics and structure show characteristic glassy behavior:
when the interaction strength Γ is increased, the system
viscosity increases over several orders of magnitude while
the global structure remains amorphous.

For all measured interaction strengths the system
shows no long-range order as probed with bond order cor-
relation functions [8]. However, on a local scale it reveals
non-trivial ordering phenomena: partial clustering and lo-
cal crystallinity.

Partial clustering [20,21] means that the small par-
ticles tend to form loose clusters while the big particles
are homogeneously distributed. The heterogeneous con-
centration of small and big particles leads to a variety of
local crystal structures when the system is supercooled
making up the globally amorphous structure. This local
crystallinity obviously plays a key role for the glass tran-
sition in this 2D colloidal system as it dominates the glassy
structure [8]. Therefore, the phenomenon of partial clus-
tering is indirectly responsible for the frustration towards
the glassy state. In sect. 4 the details of the clustering
scenario are explained. The dependence on the param-
eters accessible in experiment and the relation to local
crystallinity [8] are discussed in sect. 5.

Firstly, the experimental setup is introduced. After a
brief discussion about origin of partial clustering, a mor-
phological analysis using Minkowski measures is presented
to characterize and quantify the effect. Finally, the de-
pendence on relevant parameters like the average relative
concentration ξ and the interaction strength Γ will be dis-
cussed using Euler characteristics and the partial static
structure factors.

2 Experimental setup

The detailed experimental setup is explained in [22]. It
consists of a mixture of two different kinds of spherical and
super-paramagnetic colloidal particles (species A: diame-
ter dA = 4.5µm, susceptibility χA = 7.4 · 10−11 Am2/T,
density ρA = 1.5 g/cm3 and species B: dB = 2.8µm,
χB = 6.6 · 10−12 Am2/T, ρB = 1.3 g/cm3) which are con-
fined by gravity to a water/air interface. This interface is
formed by a water drop suspended by surface tension in a
top sealed cylindrical hole (6mm diameter, 1mm depth)
of a glass plate as sketched in fig. 1. A magnetic field H

is applied perpendicular to the water/air interface induc-
ing a magnetic moment M = χH in each particle leading
to a repulsive dipole-dipole pair interaction. Counterpart
of the potential energy is thermal energy which gener-
ates Brownian motion. Thus the dimensionless interaction
strength Γ is defined by the ratio of the potential versus
thermal energy

Γ =
Emagn

kBT
∝ 1

Tsys

=
µ0

4π
· H

2 · (πρ)3/2

kBT
(ξ · χB + (1 − ξ)χA)2. (1)

H

Air

Water

Glass cell in side view

Fig. 1. Super-paramagnetic colloidal particles confined at a
water/air interface due to gravity. The curvature of the inter-
face is actively controlled to be completely flat; therefore the
system is considered to be ideal two-dimensional. A magnetic
field H perpendicular to the interface induces a magnetic mo-
ment m in each bead leading to a repulsive dipolar interaction.

Here, ξ = NB/(NA + NB) is the relative concentration of
small species with NA big and NB small particles and ρ
is the area density of all particles. The average distance
of neighboring big particles is given by lA = 1/

√
ρ

A
. The

interaction strength can be externally controlled by means
of the magnetic field H. Γ can be interpreted as an inverse
temperature and controls the behavior of the system.

The ensemble of particles is visualized with video mi-
croscopy from below and the signal of a CCD 8-Bit gray-
scale camera is analyzed on a computer. The field of view
has a size of 1170 × 870µm2 containing typically 3 · 103

particles, whereas the whole sample contains about up to
105 particles. Standard image processing is performed to
get size, number and positions of the colloids. A computer-
controlled syringe driven by a micro-stage controls the vol-
ume of the droplet to get a completely flat surface. The
inclination is controlled actively by micro-stages with a
resolution of α ≈ 1µrad. After several weeks of adjusting
and equilibration, this provides best equilibrium condi-
tions for long-time stability. Trajectories for all particles
in the field of view can be recorded over several days pro-
viding the whole phase space information.

3 Origin of partial clustering

The origin of the clustering phenomenon lies in the nega-
tive nonadditivity of the binary dipolar pair potential [20,
21]. It is not expected in positive nonadditive mixtures like
colloid-polymer mixtures or additive mixtures like hard
spheres. In binary mixtures with additive hard potentials
in 2D, phase separation was found using Monte Carlo sim-
ulations [23]. In addition to the negative nonadditivity, the
relation vBB < vAB < vAA of the pair potentials has to
be fulfilled [20,21]. Why this leads to partial clustering
can be understood as follows: The negative nonadditiv-
ity prevents macro-phase separation as the negativity of
the nonadditivity parameter ∆ = 2σAB − (σAA + σBB)
means that particles are effectively smaller in a mixed
state (σij =

∫
∞

0
dr{1−exp[−vij(r)/kBT ]} are the Barker-

Henderson effective hard-core diameters). Thus, a mixed
configuration is preferred this way. Additionally, the in-
equality vAB < vAA energetically favors direct neighbor
connections between different species instead of big parti-
cles being neighbors. In competition to this, the inequality
vBB < vAB favors the neighboring of small particles. The
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Fig. 2. Snapshot of a particle configuration (Γ = 5, relative
concentration ξ = 41%) where big (left) and small (right) par-
ticles are displayed separately. The clusters of small particles
(right) fit in the voids formed by the big particles (left) as
highlighted by circles for two examples.

best compromise is achieved in the partial clustered ar-
rangement: neighboring small particles that are located in
the voids of big particles.

The genuineness of the effect was demonstrated by a
comparison of computer simulation, theory and experi-
ment [20]. There, statistical evidence for the occurrence
of partial clustering is provided by the static structure
factor. The structure factor SAA(k) has the characteristic
shape of a one-component fluid. In contrast, the structure
factor of the small particles SBB(k) has a dominant pre-
peak at small wave vectors which is statistical evidence
for an inherent length scale much larger than the typical
distance between two neighboring small particles: it is the
length scale of the clusters.

The prepeak provides statistical evidence of an inher-
ent length scale in the small-particle configurations. How-
ever, the structure factors do not reveal all details of the
phenomenon. For example, the voids seen in the big par-
ticle configurations (see fig. 2) are not reflected directly
in the features of the partial structure factors. To further
elucidate the scenario, the effect is now investigated from
a morphological point of view using Minkowski measures
as this provides additional quantitative insight.

4 Morphological analysis

For low interaction strengths Γ the system is an equili-
brated fluid as seen from the purely diffusive behavior [5].
Assuming that entropy is maximized, it might be intu-
itively expected that particles form an arbitrarily mixed
state where small and big particles are evenly distributed.
However, already the inspection of a single snapshot re-
veals that this is not the case, and the scenario turns out
to be more subtle. How the system appears in equilib-
rium at low interaction strengths Γ is demonstrated in
fig. 2. There, a configuration with relative concentration
ξ = 41% at Γ = 5 is separately plotted for big (left)
and small (right) particles. Big particles are distributed
more evenly while the small particles form loose clusters.
Configurations of big and small particles are related be-
cause small-particle clusters are able to push away the big
particles and form voids in the big-particle configuration.
This connection becomes obvious in the highlighted re-

gions where two big clusters of small particles create two
voids in the big-particle configuration. This visual impres-
sion of the configurational morphology will be quantified
in detail after a brief introduction of the used tools, the
Minkowski measures.

Minkowski functionals provide morphological mea-
sures for characterization of size, shape, and connectivity
of spatial patterns in d dimensions [24]. These functionals
turned out to be an appropriate tool to quantify clustering
substructures in astronomy, e.g. from galaxies [25]. They
also give insight into the morphology of random interfaces
in microemulsions [26].

The scalar Minkowski valuations V applied to patterns
P and Q in Euclidian space are defined by three types of
covariances [25]:

1) Invariance to motion.
2) Additivity: V (P

⋃
Q) = V (P ) + V (Q) − V (P

⋂
Q).

3) Continuity: continuous change for slight distortions in
pattern P .

It is guaranteed by the theorem of Hadwiger that in d
dimensions there are exactly d+1 morphological measures
V that are linearly independent [24]. For d = 2, the three
functionals have intuitive correspondences2: The surface
area, the circumference of the surface area, and the Euler
characteristic χ.

In two dimensions the Euler characteristic χ for a pat-
tern P is defined as

χ = S − H, (2)

where S is the number of connected areas and H the num-
ber of holes.

Morphological information can also be obtained from
particle configurations. As configurations only consist of
a set of coordinates, a cover disc with radius R is placed
on each coordinate to construct a pattern that can be
evaluated.

The Minkowski measures are then determined for dif-
ferent cover radii R, leading to a characteristic curve for a
given configuration, explained in the following (for better
understanding, follow the curves in fig. 3).

The first Minkowski measure (disc area normalized to
total area) increases from 0% to 100% for increasing ra-
dius R with a decreasing slope when discs start to overlap.
The second Minkowski measure (circumference) increases
with cover radius R, reaches a maximum, and then de-
cays to zero when all holes are overlapped. The third
Minkowski measure (Euler characteristic) is very subtle
and describes the connection of cover discs and the for-
mation of holes. It allows the most detailed interpretation
of a given configuration.

A typical devolution of an Euler characteristic χ/N
with N particles can be divided in three characteristic
parts for continuously increasing cover disc radius R:

1) For small R the curve is constant at χ/N = 1 (nor-
malized to the number of particles N). Discs are not

2 For d = 3 a common set of functionals correspond to: vol-
ume, area, integral mean curvature, and Euler characteristic.
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Fig. 3. The three “Minkowski” measures in 2D (“area”, “cir-
cumference”, and “Euler characteristic”) are shown for a sam-
ple with ξ = 42% at Γ = 662, separately for big (left graphs)
and small particles (right graphs). Configurations were deco-
rated with discs and the “Minkowski” measures are calculated
in dependence on their radius R/lA. The solid lines correspond
to the “Minkowski” measures of a single cover disc. Marks A-E
and a-e in the bottom graphs correspond to radii of interest,
and an example of a representative configuration at these la-
bels is displayed in fig. 4. The features of all measures confirm
the clustering scenario.

touching and thus S is equal to the number of parti-
cles. No holes are present. As χ is normalized with the
number of points, the Euler characteristic amounts to
χ/N = 1.

2) With increasing R the curve drops and χ/N can be-
come negative when cover discs are large enough to
overlap and holes are formed. Therefore, the number
of connected areas S decreases and holes are forming
which further decreases χ/N . The minimum is reached
when discs are connected to a percolating network and
the maximum number of holes has formed.

3) For large R the curve starts to raise again because the
holes are collapsing until the whole plane is covered
with overlapping discs and χ/N → 0 for R → ∞.

This qualitative behavior is typical for configurations
in 2D. However, the individual morphological informa-

tion is obtained from specific features in the three regions
as the onset of the fall and rise, characteristic kinks or
plateaus, and the slope of the fall and rise. The Minkowski
measures in dependence on an increasing cover disc pro-
vide a characteristic morphological “fingerprint” of config-
urations and therefore statistical evidence of the clustering
scenario, complementary to structure factors [20,21]. The
statistical noise of the curves is remarkably small com-
pared to that of structure factors as the whole statistical
information of a configuration is contained in every data
point. Thus, even small features in the curves are true
evidence for morphological particularities.

All three Minkowski measures in 2D, area, circum-
ference, and Euler characteristic, are averaged over 100
configurations for a given temperature and no time de-
pendence was found during this period of about half an
hour. The curves are plotted separately for both species in
fig. 3 in dependence on the cover disc radius. Correspond-
ing snapshots are displayed in fig. 4 to illustrate charac-
teristic radii as indicated. The used sample was strongly
supercooled (Γ = 662, ξ = 42%), i.e. it was not in equi-
librium. However, the features found at these high inter-
action strengths are the same as for low Γ , where the
sample is in equilibrium. The high interaction strength is
used here, as the discussed features become clearer, but it
is assumed in the following that the conclusions on clus-
tering are also valid for low interaction strengths Γ . This
assumption will be justified when the dependence on the
interaction strength is discussed in sect. 5.

First Minkowski measure: Area

The upper graphs of fig. 3 show the area per parti-
cle in dependence on the cover radius R/lA. The cov-
ered area starts at zero and is increased continuously to
100% when the discs completely overlap the area. The
solid line in both plots indicates the area fraction cov-
ered by nontouching free discs. The deviation of the first
Minkowski measure from that line shows how homoge-
neous a configuration is. A clear difference is found be-
tween particle species: The big particles follow this ref-
erence line up to ≈ 80%. This is close to the maximum
possible value for hard discs between 84% and 90.7% for
random close packing and hexagonal close packing, respec-
tively [7,27,28]. Therefore, the big-particle configurations
are very homogeneously distributed. However, the small-
particle curve deviates from the free-disc reference much
earlier at ≈ 40%, indicating that small particles are much
less evenly spread, i.e. they form clusters.

Second Minkowski measure: Circumference

The middle graphs show how the circumference depends
on the radius. The black reference line corresponds to a
free expanding circle. The measure of the big particles fol-
lows this reference line up to R/lA ≈ 0.5 and then sharply
decreases. Again, this is due to the homogeneous distri-
bution of the big particles. Their cover discs can expand
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Fig. 4. The same section (375 × 375 µm2) of a single particle configuration with cover discs is shown several times in the
pictographs A-E and a-e with increasing radius. Pictures correspond to certain radii of interest marked by arrows in the
corresponding graphs of the “Euler characteristic” in fig. 3. In the first (second) row, just the big (small) particles of this
particular configuration are shown. Voids in the big particle configurations are filled with clusters of small particles (examples
are highlighted with circles in pictograph “A” and “a”, respectively). Configurations were obtained from a sample with ξ = 42%
at Γ = 662.

freely up to the maximum possible value of Rmax/lA = 1/2
for square order. The measure of the small particles devi-
ates much earlier and less steeply as their particle density
is very heterogeneous, i.e. clustered.

Third Minkowski measure: Euler characteristic

The most detailed information on morphology is obtained
from the Euler characteristic. It exhibits many features
related to characteristic structures of the investigated con-
figurations. For better understanding of the features de-
scribed in the following, fig. 4 shows snapshots of a typical
section in the used configuration for specific cover-radii.
The notation A-E for the big particles and a-e for the
small ones is used in both figs. 3 and 4. In fig. 4a and 4A
two clusters are highlighted. Firstly, we consider only the
big particles. The Euler characteristic χA per particle is
1 as the expanding discs are not touching for small radii
(mark A). Again, this continues up to a value close to
R/lA ≈ 0.5. The characteristic deviation of all three mea-
sures at this same radius states the homogeneity of the big-
particle distribution. Then, discs touch and χA/NA de-
creases rapidly because surfaces are connecting and holes
are forming (mark B). The minimum is reached at mark C,
and the Euler characteristic immediately raises because
the smallest holes between the triangular close-packed re-
gions collapse as seen in the comparison of figs. 4C and 4D.
The next holes to collapse are those where one small iso-
lated particle is located. Therefore, a little kink is visible
at mark D since these one-particle holes are a little larger
than the holes decaying at mark C and therefore “survive”
a little longer. When they collapse, the Euler characteris-
tic increases rapidly to a pronounced plateau. Note that
this plateau is the only statistical evidence for the voids
in the big particle configuration made up by the clusters:
these voids are large and thus they “survive” for a long

“time” resulting in that plateau. These voids are not de-
tectable with the other Minkowski measures or the static
structure factor of the big particles [20,21]. Finally, they
start to decay at mark E, but not suddenly, which shows
that they have a distribution in size.

The Euler characteristic of the small particles shows
the complementary picture: Starting with low values of
R/lA the characteristic is χB/NB = 1 for free disc expan-
sion. The first drop at mark b occurs at much lower values
than for the big particles because small particles in clus-
ters connect. The subsequent shoulder right next to mark
b confirms the clustering: small particles inside a cluster
are now connected, and it needs some further increase of
disc radius until the clusters themselves start connecting.
A small second shoulder at mark c originates from the iso-
lated particles that are not arranged in clusters. They are
the last particles incorporated until all discs form a per-
colating network at the minimum at mark d. The increase
of χB/NB shows how the holes are closing. While the in-
crease in the Euler characteristics of the big particles has
a plateau at mark E, the small particles have a clear dip at
mark e. This reveals information on the shape of the clus-
ters: The voids in the big particle positions are compact
in shape stopping the increase of the Euler characteristic
before mark E. In contrast, the small particles arrange in
chain-like clusters. When the voids between these struc-
tures close, they decay into several sub-holes causing the
characteristic to decrease again. In fact, the big particles
also cause a little dip at their plateau for the voids can
sometimes also decay into sub-holes. However, this dip is
much smaller than for the small ones.

Most features are also visible in the Euler character-
istic obtained from Brownian dynamics simulation [20].
There, the same qualitative behavior is found but the
smaller features are “washed out” because the used in-
teraction strengths were much lower, as discussed in the
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Fig. 5. Fraction of small particles (relative to all small particles
NS , left axis) that are arranged in clusters. This fraction is
independent of Γ but dependent on the relative concentration
ξ. The dashed lines correspond to the average fractions over all
interaction strengths Γ . Solid squares represent the fraction of
small particles (relative to all small particles NS , right axis)
that are arranged in square symmetry as evaluated in [8].

following section. Further, the variation of the relative con-
centration ξ and the subsequent dependence of the fea-
tures in the Euler characteristic will confirm the interpre-
tation of the scenario.

5 Dependence of clusters on interaction

strength and relative concentration

In order to demonstrate the connection between clustered
equilibrated fluid and supercooled local crystalline struc-
ture, the dependence of partial clustering on the interac-
tion strength Γ and on the average relative concentration
ξ is now discussed.

In fig. 5 the fraction of small particles arranged in clus-
ters is plotted versus interaction parameter Γ for two dif-
ferent relative concentrations ξ. A small particle is char-
acterized as “cluster-particle”, when the closest neighbor
is also a small particle. This simple criteria implies that
the smallest possible cluster consists of two close small
particles surrounded by a cage of big ones. In the graph
of fig. 5 for ξ ≈ 43% it is found that a high fraction of
≈ 80% of all small particles is arranged in clusters. Even
for a lower relative concentration ξ ≈ 29%, still ≈ 65%
are arranged in clusters. Note that the fraction of small
particles in both samples is smaller than that of the big
particles as ξ < 0.5. Therefore, every small particle could
have enough possibilities to arrange far away from the
next small particle which is obviously not the case. For
an arbitrary distribution of the small particles over the
number of possible sites (which is equal to the number of
big particles) a fraction of 40% is expected for a relative
concentration ξ = 29% and a fraction of 55% for a rela-
tive concentration ξ = 43%3. The fact that these expected

3 A simple simulation is performed where NA sites are ran-
domly occupied with small particles, and the same analysis to
determine the number of cluster-particles is applied.

Fig. 6. “Euler characteristics” of big (left) and small (right)
particles for different interaction strengths Γ . Characteristic
features are visible for the lowest Γ and become clearer with
increasing Γ . The relative concentration was ξ ≈ 43%. Curves
are shifted for clarity.

values are significantly lower than the actually measured
ones additionally confirms that small particles effectively
attract each other and therefore cluster.

The main result from fig. 5 for the structure of this col-
loidal glass former is that the fraction of cluster-particles
is independent of the interaction parameter Γ , in con-
trast to local crystallinity which strongly increases upon
supercooling: Clusters do not vanish although the local
structure is dominated by local crystallinity for strong su-
percooling [8]. This is demonstrated for the example of
square order in the same fig. 5 (for details, see [8]).

The local relative concentration is frozen in. Small par-
ticles are not redistributed to match an equilibrium crys-
tal structure which would reduce the number of cluster-
particles (e.g. in square order). In fact, the independence
of the clustering from Γ shows that the opposite is the
case: The clusters force the local structure into that crys-
talline order which matches best with the local relative
concentration. In this way, local crystallinity is established
without long-range order [8] as it inherits the clustered
distribution of the small particles.

This behavior is confirmed by the graphs of fig. 6.
The Euler characteristics for both species are plotted over
a wide range of the interaction strength Γ , from fluid
(Γ = 5) to the strongly supercooled state (Γ = 662):
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Fig. 7. (Colour on-line) Static structure factors and “Eu-

ler characteristics” of samples with comparable interaction
strength Γ but different relative concentration ξ. Indicated val-
ues for Γ and ξ are valid for all graphs. Upper graphs: Static
structure factors for big (left) and small particles (right). With
increasing relative concentration of small particles the features
of SBB(k) gain more contrast, and peaks in the SAA(k) are
shifted slightly towards higher k-values. Lower graphs: “Euler

characteristics” for big (left) and small particles (right). For
decreasing ξ the minimum in χB/NB is shifted towards larger
radii R. The weight of the features changes, see, e.g., the last
shoulder in the drop in χB/NB (red arrow, right plot). This
shoulder results from the incorporation of isolated small par-
ticles into the network (see fig. 3) and is only visible for the
lowest relative concentration ξ = 30% (red curve) at this inter-
action strength Γ . The blue arrow in the bottom left plot marks
the onset of the inter-particle connection of the big particles
for the sample with highest relative concentration ξ = 61%.
The onset is shifted to a lower value R compared to the other
curves.

the curves change continuously. The main clustering fea-
tures as discussed in fig. 4 are visible for all values of Γ ,
they just become sharper with increasing the interaction
strength. The smallest features like the kink at mark D
in fig. 3 are smeared out for low Γ but the plateaus and
shoulders characterizing the partial clustering are qualita-
tively independent of Γ .

In fig. 7 the dependence of the local structure on the
relative concentration ξ is shown using structure factors
and Euler characteristics. There, samples with compara-
ble interaction strengths Γ but different relative concen-
trations ξ are compared. Adding small particles is shifting
the peaks of the structure factor SAA(k) towards higher
k-values. This can be understood by the clustering effect:
Small particles form clusters and push the big particles
closer together resulting in a shift of the main peak. This

shift is small for the used parameters. However, confirma-
tion of this interpretation is found in [21] where Liquid
integral equation theory shows the same result unambigu-
ously. There, parameters were used that are not accessible
in the experiment (different ratios of the magnetic mo-
ments χB/χA). The contrast in SBB(k) is increased for
higher relative concentrations ξ which is also in agreement
with theory [21].

The Euler characteristics for the same samples, shown
in the lower graphs of fig. 7, confirm this interpretation.
The drop in the χA/NA (bottom left) becomes deeper
when less small particles are present. Then, the distances
between big particles are less distributed due to fewer clus-
ters. The increase becomes steeper for the same reason:
clusters of small particles cause larger voids collapsing at
higher cover disc radii. It is remarkable that the onset of
the steep drop is earlier for high relative concentrations
(ξ = 61%, blue curve) as indicated by the blue arrow.
Again, this is caused by the small-particle clusters that
push together the big particles.

A strong dependence is found in the Euler character-
istics of the small particles: the onset of the first drop is
independent of the relative concentration indicating that
the local density of particles in clusters is not affected
(unlike that of big ones). What significantly changes is
the depth of the first drop. The smaller the particles, the
deeper the drop, because more small particles are arranged
in clusters. The last shoulder, before the Euler character-
istic reaches its minimum (marked by red arrow), refers
to the isolated particles (see sect. 4). Therefore, at these
interaction strengths this shoulder is only visible for the
sample with the lowest relative concentration ξ = 30%
(red curve) which has the most isolated particles (com-
pare also with fig. 5).

The systematic dependence of Euler characteristics
and static structure factors on the relative concentration ξ
confirms the interpretation of partial clustering of sect. 4.
However, the main result of this section is that the prin-
ciple occurrence of the effect is independent of the inter-
action strength: The clustering in equilibrium at low in-
teraction strengths is therefore responsible for the variety
of local crystallinity at strong supercooling suppressing
long-range order [8].

6 Conclusions

On a local scale the system reveals the nontrivial ordering
phenomenon of partial clustering : the small particles tend
to form loose clusters while the big particles are homoge-
neously distributed. The origin of this effect is traced back
to the negative nonadditivity of the dipolar pair potential.
The detailed scenario is quantified using Minkowski func-
tionals applied to experimentally obtained configurations.
Changing the interaction strength Γ reveals that the prin-
ciple scenario does not qualitatively depend on the inter-
action strength, and, as a consequence, the local relative
concentration is simply “frozen” in. However, the strength
of the effect increases with the relative concentration ξ.
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The clustering effect together with the missing ability
of the system to reorganize fast enough into an equili-
brated state (i.e. extended crystal structure [8,18,19]) is
crucial to understand the glass forming behavior of this
system: The partial clustering leads locally to a hetero-
geneous relative concentration ξ which then leads for in-
creasing interaction strengths Γ to local crystallinity [8]
without long-range order. It provides the necessary com-
plexity for glassy frustration in this 2D system and pre-
vents solidification into the energetically preferred crys-
talline or poly-crystalline morphologies [18,19].
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